Algebraic Methods for Optimization Problems

نویسندگان

  • Richard S. Bird
  • Jeremy Gibbons
  • Shin-Cheng Mu
چکیده

We argue for the benefits of relations over functions for modelling programs, and even more so for modelling specifications. To support this argument, we present an extended case study for a class of optimization problems, deriving efficient functional programs from concise relational specifications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Method for Solving Convex Quadratic Programming Problems Based on Differential-algebraic equations

In this paper, a new model based on differential-algebraic equations(DAEs) for solving convex quadratic programming(CQP) problems is proposed. It is proved that the new approach is guaranteed to generate optimal solutions for this class of optimization problems. This paper also shows that the conventional interior point methods for solving (CQP) problems can be viewed as a special case of the n...

متن کامل

Numerical solution of optimal control problems by using a new second kind Chebyshev wavelet

The main purpose of this paper is to propose a new numerical method for solving the optimal control problems based on state parameterization. Here, the boundary conditions and the performance index are first converted into an algebraic equation or in other words into an optimization problem. In this case, state variables will be approximated by a new hybrid technique based on new second kind Ch...

متن کامل

Biorthogonal cubic Hermite spline multiwavelets on the interval for solving the fractional optimal control problems

In this paper, a new numerical method for solving fractional optimal control problems (FOCPs) is presented. The fractional derivative in the dynamic system is described in the Caputo sense. The method is based upon biorthogonal cubic Hermite spline multiwavelets approximations. The properties of biorthogonal multiwavelets are first given. The operational matrix of fractional Riemann-Lioville in...

متن کامل

Se p 20 02 ABS Methods and ABSPACK for Linear Systems and Optimization , a Review

ABS methods are a large class of methods, based upon the Egervary rank reducing algebraic process, first introduced in 1984 by Abaffy, Broyden and Spedicato for solving linear algebraic systems, and later extended to nonlinear algebraic equations, to optimization problems and other fields; software based upon ABS methods is now under development. Current ABS literature consists of about 400 pap...

متن کامل

Global Optimization for Algebraic Geometry - Computing Runge-Kutta Methods

This research work presents a new evolutionary optimization algorithm, EVO-RUNGE-KUTTA in theoretical mathematics with applications in scientific computing. We illustrate the application of EVO-RUNGE-KUTTA, a two-phase optimization algorithm, to a problem of pure algebra, the study of the parameterization of an algebraic variety, an open problem in algebra. Results show the design and optimizat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000